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ABSTRACT 

This is a two part report. 

The first part is concerned with the characteristics of conical 

spiral antennas constructed with zigzag, i.e., slow-wave geometry, arms. 

This construction permits a reduction in size of approximately 15 percent 

below that required for the conventional antenna.  It also increases the 

pattern beamwidth and lowers the characteristic impedance. 

In part 2, a 2 1/4-turn monofilar conical helix, fed at the base of 

the cone against an inner metal core, was investigated.  This small cir- 

cumference (approximately 1/4 wavelength) antenna can be made to be an 

axial radiating structure, while the conventional helix of this size 

radiates a maximum of energy broadside to the antenna axis. 

Accepted for the Air Force 
Joseph J. Whelan, USAF 
Acting Chief, Lincoln Laboratory Liaison Office 
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INTRODUCTION 

The logarithmic spiral antennas have found extensive use because of 

their very wide bandwidth and excellent circular polarization properties. 

These structures are not small in wavelengths, however, and for many 

practical applications an attempt at size reduction seems justified. This 

problem could be attacked by loading the antenna with dielectric or ferrite 

material and there have been several extensive studies of loading carried 

out.  Possibly the best known, in the unclassified literature,is the work 

at the University of Michigan.^ ^ 

For the past year we have been concerned with a second attack, namely 

constructing the antennas in a slow-wave geometry. This problem was 

briefly looked at here at the University of Illinois a number of years 

ago and at other places, but with the exception of a paper on the flat 

(2) 
spiral antennav ' there is little quantitative information available in 

the open literature. 

The investigation thus far has been limited to the use of a zigzag 

geometry on conical logarithmic spiral antennas^ ' Several families of 

conical spiral antennas with a suitable range of parameters have been con- 

structed and investigated, by measuring the amplitude and phase of the 

near fields along the surface of the antenna, and relating this information 

to far field radiation pattern measurements. This information has been 

supplemented by VSWR and impedance measurements. 

We have constructed these antennas with the arms following a zigzag 

path within the envelope formed by the edges of a conventional wide arm 

conical log-spiral antenna. The "geometric slowing factor" has been defined 

to be the ratio of the path length along the zigzag path, between two 



radius vectors on the antenna, to the path length along the center line 

of the conventional spiral geometry between the given radius vectors. 

This slowing factor can be varied by varying the angular width of the 

envelope which bounds the undulating geometry, or by changing the period 

of the path. 

In this investigation we have defined an "electrical slowing factor" 

to be the ratio of the measured propagation constant along the modified 

(i.e., zigzag ) antenna to that measured along the unmodified antenna. 

We have observed a large difference between the geometric and electric 

slowing factors. 

Based upon this information we have used this slow-wave geometry to 

design one version of a slow wave conical helix antenna fed against an 

inner metal cone.  This report is divided into two parts.  The first 

deals with the conical spiral antennas.  The second with the preliminary 

investigation of the slow-wave conical helix. 

PART I - THE SLOW-WAVE CONICAL SPIRAL 

1.1 The Conical Log-Spiral Parameters 

The radiating characteristics of the conical log-spiral antenna are 

dependent upon the physical parameters indicated in Figure 1.  The principle 

parameters are the base diameter in wavelengths, the included cone angle 

2 8 ; the angular arm width 6 ; and the rate of wrap a.  The angular arm 

width 6 is defined as the projection of the angle 6' (see Figure 1) on a 

plane perpendicular to the axis of the cone. The angle of 

wrap a is the angle between the spiral and a radius vector extending from 

the tip to the base along the surface of the cone, the angle being measured 

clockwise from the radius vector. 



Figure 1.  Conical antenna with associated parameters. 



The antennas referred to in this report are identified in the following 

manner: 

2C - 10 - 70 - 90 - 15/30 - 2.0 

12   3   4     5     6 

1 - Two arm conical 

2 - Included cone angle of 10° 

3 - Angle of wrap, a 

4 - Angular width of spiral arm for the conventional antennas. 

For the zigzag structures: 

4 - Represents the angular width of the spiral envelope of the undulating 

arm (see Figure Al of Appendix A). 

5 - The first number, i.e., 15 in th:j.s case represents the actual angular 

arm width of the undulating arm, the second number, i.e., 30 represents 

the angular width of one cycle of undulation.  In this study we have 

used two arm widths, 7.5 and 15°). 

6 - The geometric slowing factor as calculated (see Appendix C). 

Variation in the angle of wrap, a, was limited to the angles 65° and 

70°. An included cone angle of 10° and a base diameter of 7 in. were chosen. 

This is obviously a limited range of parameters.  Their choice was 

dictated with an ultimate application in mind. 

1.2 The Slow-Wave Geometry 

Four slowing factors were chosen for each family of antennas (a = 65° and 

70°) to determine how these factors would affect the required size of the 

antenna. The geometry to give these slowing factors is discussed in detail 

in Appendix A.  Two arm widths were chosen for each slowing factor to 

determine the effect of this parameter.  Each slow-wave antenna was compared 



to the appropriate normal complementary conical spiral arm antenna (6' = 90°) 

since this antenna can conveniently be taken as an optimum design for any 

rate of wrap, a.  The slow-wave antennas were also compared to spiral 

antennas with arm widths equal to the two slow-wave arm widths (the deter- 

mination of these widths is discussed in Appendix B).  Figure 2 shows a 

family of slow-wave antennas and Figure 3 shows one slow-wave antenna 

between an antenna with spiral arm width equal to the envelope of the 

slow-wave geometry and an antenna with spiral arm width equal to the arm 

width of the slow-wave structure. 

1.3 Near Field Measurements 

1.3.1 Amplitude Measurements 

It is known that the current flowing from the point of excitation (the 

apex) of the conical antenna, passes through a transmission line type 

region to a region where there is rapid radiation of energy into space. 

This latter, the active region, is fairly well defined and for normal 

operation of the antenna, a constant distance from the true apex of the 

cone in wavelengths.    Measurements were made to provide a comparison 

of the near fields of the slow-wave structure to those on the corresponding 

conventional conical antennas. 

The fields near the surface of the antenna were measured with an 

electric field, or charge, probe as shown in Figure 4. The variable choke 

was adjusted to a quarter-wave length, and absorbing material was placed 

on the probe line   to  supress induced currents. The probe was positioned 

to be perpendicular to the surface and moved on a path parallel to the 

surface of the cone, at a spacing of 0.045 \  from the surface, by a carriage 

mechanism that was synchronized to the X-axis of an X-Y plotter.  The entire 

arrangement of the test equipment system for measuring amplitude and phase 

is shown in Figure 5. 



Figure 2.  Family of zigzag antennas, a = 70°, with slowing factors 
of 2.0, 2.5, 3.0, and 3.5 (from left to right). 



Figure 3. Complementary (6' - 90°), thin zigzag, and 
"equivalent"(6' = 16°) spiral antennas for 
a = 65°. 
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Figure 5.  Near-field amplitude and phase measurement system. 
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Figures 6 and 7 show the relative amplitudes of the normal component 

of the electric field near the surface of the cones of two normal spiral 

arm antennas with an angle of wrap a = 65°, 6 = 90° and 16° compared to 

the amplitude of these fields on a wide and thin arm slow-wave antenna 

(widths of 15/30 and 7.5/30), both with the same geometric slowing factor. 

The first portion of these curves is characteristic of the transmission 

line region on the log-spiral antennas. The fields are tightly bound to 

the structure and little energy is coupled to the probe.  Farther from 

the apex of the antenna,the fields become more loosely bound and energy is 

more efficiently radiated.  Considering as an example the curve for the 

2C - 10 - 65 - 90 antenna in this figure, the region from approximately 

.63 to 1.4 wavelengths from the apex could be defined to be the active 

(4) radiating region. This would be in agreement with previous studies. * 

This definition is based upon the approximate points where the near fields, 

as measured here, are 3 dB below the maximum recorded level on the apex 

side of the maximum, and 15 dB below this maximum on the base side. The 

antenna current in this region determines, to a first order, the radiating 

characteristics of the antenna.  It is obvious that the active regions of 

the slow-wave antennas are displaced toward the apex, and since the antennas 

can be truncated at a size such that near fields have decayed approximately 

15 db below the recorded maximum, a smaller size structure should be possible 

for any frequency of normal operation. 

The curve for the narrower arm antenna (7.5/30) shows the greatest 

shift.  Figures 8 and 9 represent similar plots of the measured charge 

distribution for antennas with a slightly tighter wrap (a = 70°).  In these 

and all other near field amplitude and phase plots, the curves start at 

the truncated tip of the antenna cone and end at the base of the cone. 
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Also noticable, and this characteristic is present when these antennas 

are "loaded" by any means, the active region is slightly wider on the slow- 

wave antennas than it is for the conventional antenna.  This will tend to 

broaden the radiation pattern^ J and mean that the bandwidth will be reduced 

for any fixed size structure. 

Figures 10 and 11 show the calculated electric slowing factor versus 

the geometrically designed slowing factor for the two angles of wrap, as 

compared to the complementary (6' = 90°) spiral arm antenna and the antennas 

of angular spiral arm widths equal to the two zigzag arm widths.  (See 

Appendix C for calculation method).  It is apparent that the narrower arm 

geometry (7.5/30) is a slower wave structure than the wider arm geometry. 

However, there is a wide discrepancy between the electric and geometric 

slowing factors. 

1.3.2 Phase Measurements 

The relative phase of the normal component of the electric field 

along a radial line near the surface of the cones was measured.  As a 

reference,the relative phase measured on the conventional spiral antennas 

is plotted in Figures 12 and 13.  The small arrows on these curves in- 

dicate the distance from the apex where the measured amplitude of these 

fields were 3 dB down on the apex side, and 10 and 15 dB down from the 

recorded maximum on the base side, of this maximum.  There is an essentially 

linear change in phase over the active region, with little dependence upon 

the three arm widths which were investigated. 

Figures 14 thru 17 show the measured phase along the slow-wave spiral 

antennas.  Figures 18 and 19 show a direct comparison between the con- 

ventional antennas and antennas with a slowing factor of 2.5. 

*For each angle of wrap a, there was one antenna corresponding to a par- 
ticular geometric slowing factor where the data were not in accord with 
the trend of the curve.  These points were plotted in Figures 10 and 11 
but were omitted from consideration. The top point refers to the top curve-, etc. 
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We note that there is a displacement in some of the curves indicating 

that the guide wavelength along the surface has been reduced, causing the 

shift of the active region towards the apex. Thus the active region begins 

and ends at smaller radii, yielding a smaller antenna. This corroborates 

the near-field amplitude data. 
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1.4 Far-Field Measurements 

1.4.1 Radiation Patterns 

Radiation patterns were recorded for the conventional, or "control" 

antennas, and the slow-wave antennas at 800 MHz. At this frequency the 

base diameter was approximately 0.47 wavelengths and all of these antennas 

should be operating in a normal "frequency independent mode", i.e., with 

a very minimum of tip or base truncation effects.  Patterns were recorded 

for two planes of constant angle <J).  The antennas were illuminated by a 

linearly polarized field with constantly rotating plane of polarization. 

The patterns are plotted in decibels and hence the width of envelope of 

the excursions of the pattern, at any angle 6, is the axial ratio in dB of the 

antenna at that angle of incidence. 

Patterns for a conventional antenna with spiral angle a = 65°, and a 

slow-wave antenna with a = 65° and a slowing factor of 3.5, are shown in 

Figures 20 and 21. Similar patterns for a = 70° antennas are shown in 

Figures 22 and 23 . 

The increase in beamwidth, as the arms are constructed in a slow- 

wave geometry, is obvious.  The wider beam width and "rougher" patterns 

(4) 
result from the broadening of the active region.  '  A fairly complete 

set of radiation patterns for the range of parameters which was investigated 

is included as Appendix D. 

The measured maximum 3 dB and 10 dB beamwidths of the a = 70° antennas 

are plotted in Figure 24.  The conventional antennas (no slowing) with 

6'= 90°, are plotted along the left axis (a slowing factor of 1.0). The 

slow-wave structures with the wider arms (15/30) showed less change with 

increased slowing than the thin arm (7.5/30).     This effect was noted 
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antenna, a = 65°, 6f = 90°.  Recorded with continually 
rotating linearly polarized receiving antenna. 
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in the near field measurements.  This effect can possibly be due to two 

things.  First, it seems possible that the antenna current follows along 

the shortest possible path down the antenna.  It apparently is concentrated 

along the inner edge of the undulation, and a thinner arm width (constructed 

as these antennas were) causes this inner edge to be a longer path.  Secondly, 

the wider arm width causes adjacent segments of arms to be closer and the 

capacitive coupling from segment to segment is greatly increased. 

The patterns of the a = 65° antennas were rougher than those for 

the a = 70° antennas, and this trend continues for still more loosely 

wrapped antennas. As a result the trend in beam widths was not as con- 

sistent for the a = 65° antennas, and only the data for the a ~ 70° is 

condensed on Figure 24. 

1.4.2 Relative Gain 

For application of these antennas at wavelengths long for the size 

of the structure ,the relative gain on axis becomes important.  To obtain 

information on this gain »sweep frequency measurements were made from 

250 to 900 MHz, where the base diameter of these antennas varied from 

approximately .15 to .54 wavelengths.  The antennas were illuminated 

with a linearly polarized incident field with the plane of polarization 

constantly rotating. The magnitude of the signal received by the antenna 

under test was recorded where this field was incident upon the apex of the 

cone (0 = 0°),and incident upon the base of the cone C6 = 180°). Figure25 

shows a plot of this recorded data for a conventional antenna (2C-10-65-90). 

Similar plots were made for the slow-wave antennas. 
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Relative amplitude of axial radiation from conventional 
conical spiral antenna, a - 65°, 6' - 90°.  Data recorded 
with rotating linearly polarized receiving antenna.  Data 
points indicated by x are Isotropie levels. 
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At about 340 MHz the front-to-back ratio had decreased to 2 dB and 

since at lower frequencies the traces for front (6 - 0°) and back (6 = 180°) 

radiation merge and become difficult to distinguish, the plot of the back 

radiation (6 = 180°) is shown only for higher frequencies. The exact cut- 

off point for this and later plots for other antennas is arbitrary and 

is only a very rough basis for comparing antennas. 

It should be noted that the generator exciting the source antenna was 

not leveled and the source antenna (an LPDA) did not have a constant gain. 

Hence the reader must exercise caution in interpreting this type plot. 

However,since the test conditions were held constant for all antennas ,a 

direct comparison between plots for different antennas is valid.  In 

addition,each plot contains much information. 

The width of the envelope of each trace is the axial-ratio in dB. 

The front to back ratio in dB is readily available.  The "broadband power 

gain" at base diameters of approximately .147, .235, and .475 wavelength 

(i.e., 250, 400 and 800 MHz) can be readily determined since at these 

wavelengths the linearly polarized isotropic level is indicated by a 

small X. 

By current IEEE Standards definition, the power gain of an antenna 

is an inherent property of the antenna and it does not involve system 

losses arising from mismatch of impedance. We here are interested in the 

broadband unmatched properties of the antenna, so mismatch loss to a 50 ohm 

system is included in the data.  We thus have defined the "broadband power 

gain" to be the conventional power gain modified by mismatch loss. 

This broadband power gain (BBPG) can be determined at the three 

mentioned wavelengths by adding the power in the two orthogonal components 

of the elliptically polarized response and comparing this to the isotropic 



36 

level. Table No. 1 has been calculated to make this convenient.  The 

axial ratio in dB, is read from the recorded plot. Table No. 1 is 

entered at this axial ratio and a correction term (C) indicating the 

relative power in dB in the smaller of the two orthogonal circularly 

polarized field components is determined. This correction term is 

added to the maximum recorded level at that point on the plot, to 

determine the total power received (or radiated in the transmitting 

case). The difference between this total power level and the isotropic 

level is the broadband power gain of the antenna in dB.  Thus the BBPG 

for the antenna of Figure 25 is approximately -4.6, +5.0, and +4.1 dB 

at 250, 400, and 800 MHz. 

A similar plot for a thin arm (61 = 16°) conventional antenna with 

the same rate of wrap is shown in Figure 26 and for a slow-wave structure 

with this same equivalent arm width (61 = 16°) and a slowing factor of 

3.5 is shown in Figure 27. 

To evaluate the performance of the slow-wave antenna we can compare 

it to the 6f = 90° antenna (the "optimized" antenna) as in Figure 28 and 

to the 6' = 16° antenna as in Figure 29. 

There is a significant increase in energy radiated on-axis at the 

very long wavelengths from the slow-wave antenna. As will become evident 

in the next section,  this increase in the BBPG is primarily due to a 

better impedance match to a 50-ohm system, and hence less energy reflected 

at the antenna terminals. 

Figures 30 through 34 show these on-axis response curves for a 

conventional 6' = 90°, 6f = 21° and a slow-wave antenna, all with an 

angle of wrap, a, of 70°. 

Response curves for other antennas in the two families which 

were tested are included in Appendix E hereto. 
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Table No. 1. Relationship between a given axial ratio in db (R), and the 
relative power in dB in the smaller of the two orthogonal circularly 
polarized  figld components   (C) 

R 

dB 

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 
0.32 
0.34 
0.36 
0.38 
0.40 
0.42 
0.44 
0.46 
0.48 
0.50 
0.52 
0.54 
0.56 
0.58 
0.60 
0.62 
0.64 
0.66 
0.68 
0.70 
0.72 
0.74 
0.76 
0.78 
0.80 
0.82 
0.84 
0.86 
0.88 
0.90 
0.92 
0.94 
0.96 
0.98 

C 
dB 

3.01 
3.001 
2.99[ 
2.981 
2.97 
2.96| 
2.95 
2.94 
2.93 
2.92 
2.91 
2.90 
2.89 
2.88 
2.87 
2.86 
2.85 
2.84 
2.83 
2.82 
2.81 
2.81 
2.80 
2.79 
2.78 
2.77 
2.76 
2.75 
2.74 
2.73 
2.72 
2.71 
2.70 
2.69 
2.68 
2.67 
2.66 
2.66 
2.65 
2.64 
2.63 
2.62 
2.61 
2.60 
2.59 
2.58 
2.57 
2.57 
2.56 
2.55 

R 
dB 

C 

.00 

.02 

.04 

.06 

.08 

.10 

.12 

.14 

.16 

.18 

.20 

.22 

.24 

.26 

.28 

.30 

.32 
^34 
.36 
.38 
.40 
.42 
.44 
.46 
.48 
.50 
.52 
.54 
.56 
.58 
.60 
.62 
.64 
.66 
.68 
.70 
.72 
.74 
.76 
.78 
.80 
.82 
.84 
.86 
.88 
.90 
.92 
.94 
.96 
.98 

2.54 
2.53 
2.52 
2.51 
2.50 
2.50 
2.49 
2.48 
2.47 
2.46 
2.45 
2.44 
2.43 
2.43 
2.42 
2.41 
2.40 
2.39 
2.38 
2.37 
2.37 
2.36 
2.35 
2.34 
2.33 
2.32 
2.32 
2.31 
2.30 
2.29 
2.28 
2.28 
2.27 
2.26 
2.25 
2.24 
2.24 
2.23 
2.22 
2.21 
2.20 
2.20 
2.19 
2.18 
2.17 
2.16 
2.16 
2.15 
2.14 
2.13 

R 

4L 
c 

2.00 
2.02 
2.04 
2.06 
2.08 
2.10 
2.12 
2.14 
2.16 
2.18 
2.20 
2.22 
2.24 
2.26 
2.28 
2.30 
2.32 
2.34 
2.36 
2.38 
2.40 
2.42 
2.44 
2.46 
2.48 
2.50 
2.52 
2.54 
2.56 
2.58 
2.60 
2.62 
2.64 
2.66 
2.68 
2.70 
2.72 
2.74 
2.76 
2.78 
2.80 
2.82 
2.84 
2.86 
2.88 
2.90 
2.92 
2.94 
2.96 
2.98 

2.12 
2.12 
2.11 
2.10 
2.09 
2.09 
2.08 
2.07 
2.06 
2.06 
2.05 
2.04 
2.03 
2.03 
2.02 
2.01 
2.00 
2.00 
1.99 
1.98 
1.97 
1.97 
1.96 
1.95 
1.94 
1.94 
1.93 
1.92 
1.92 
1.91 
1.90 
1.89 
1.89 
1.88 
1.87 
1.87 
1.86 
1.85 
1.85 
1.84 
1.83 
1.82 
1.82 
1.81 
1.81 
1.80 
1.79 
1.78 
1.78 
1.77 

4L 
3.00 
3.02 
3.04 
3.06 
3.08 
3.10 
3.12 
3.14 
3.16 
3.18 
3.20 
3.22 
3.24 
3.26 
3.28 
3.30 
3.32 
3.34 
3.36 
3.38 
3.40 
3.42 
3.44 
3.46 
3.48 
3.50 
3.52 
3.54 
3.56 
3.58 
3.60 
3.62 
3.64 
3.66 
3.68 
3.70 
3.72 
3.74 
3.76 
3.78 
3.80 
3.82 
3.84 
3.86 
3.88 
3.90 
3.92 
3.94 
3.96 
3.98 

4.00 
4.05 

dL 
1.76 
1.76 
1.75 
1.74 
1.74 
1.73 
1.72 
1.72 
1.71 
1.71 
1.70 
1.69 
1.69 
1.68 
1.67 
1.67 
1.66 
1.65 
1.65 
1.64 
1.63 
1.63 
1.62 
1.62 
1.61 
1.60 
1.60 
1.59 
\.5P 
1.58 
1.57 
1.57 
1.56 
1.56 
1.55 
1.54 
1.54 
1.53 
1.53 
1.52 
1.51 
1.51 
1.50 
1.50 
1.49 
1.48 
1.48 
1.47 
1.47 
1.46 

1.46 
1.44 

R 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

.55 

.60 

.65 

.70 

.75 

.80 

.85 

.90 

.95 

.00 

.05 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

.55 

.60 

.65 

.70 

.75 

.80 
85 

.90 

.95 

.00 

.05 
6.10 
6.15 
6.20 
6.25 
6.30 
6.35 
6.40 
6.45 
6.50 
6.55 
6.60 
6.65 
6.70 

dB. 
1.43 
1.41 
1.40 
1.39 
1.37 
1.36 
1.35 
1.33 
1.32 
1.31 
1.29 
1.28 
1.27 
1.25 
1.24 
1.23 
1.22 
1.21 

1.19 
1.18 
1.17 
1.16 
1.15 
1.13| 
1.12 
1.11 
1.101 
1.09 
1.08 
1.071 
1.061 
1.05| 
1.04 
1.02 
1.01 
1.00 
0.99 
0.98 

0.97 
0.96 
0.95 
0.94 
0.93 
0.92 
0.91 
0.91 
0.9Ö 

R      C 
dB     dB 

6.75 
6.80 
6.85 
6.90 
6.95 

7.00 
7.05 
7.10 
7.15 
7.20 
7.25 
7.30 
7.35 
7.40 
7.45 
7.50 
7.55 
7.60 
7.65 
7.70 
7.75 
7.80 
7.85 
7.90 
7.95 

8.00 
8.10 
8.20 
8.30 
8.40 
8.50 
8.60 
8.70 
8.80 
8.90 
9.00 
9.10 
9.20 
9.30 
9.40 
9.50 
9.60 
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Figure 26   Relative amplitude of axial radiation from conventional 
conical spiral antenna, a • 65°, 5' ■ 16°. Data recorded 
with rotating linearly polarized receiving antenna. Data 
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Figure 27  Relative amplitude of axial radiation from slow-wave conical spiral 
antenna, a - 65", arm width (7.5/30), slowing factor 3.5.  Data 
points (x) «re Isotropie levels. ;'<"*■■' 
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Data from Figures 25 and 27 superimposed to indicate relative 
amplitude of radiated fields from conventional complementary 
arm antenna (6* = 90°) and slow-wave antenna. 
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spiral antenna (6* = 16°) and equivalent arm width slow-wave 
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conical spiral antenna, o - 70°, 6' = 90°.  Data recorded 
with rotating linearly polarized receiving antenna.  Data 
points (x) are isotropic levels. 
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spiral antenna, o - 70°, 6' - 21°.  Data recorded with rotating 
linearly polarized receiving antenna.  Data points (x) are 
Isotropie levels. 
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1.5 Impedance and VSWR Measurements 

The input impedance of these balanced antennas was measured with a 

technique that permits the measurements of balanced impedance with un- 

(S) 
balanced coaxial equipment. *    The equipment used for these measurements 

is shown in Figure 35. On a direct Smith chart plot of these data the 

input impedance is normalized to 100 ohms. One such plot for a con- 

ventional a = 65°, 6' = 90° antenna is shown in Figure 36.  The impedance 

rapidly spirals in and converges into a relatively small area about the 

characteristic value for this antenna when operated without end effect. 

A similar plot for a thinner arm antenna (a = 65°, 6' = 16°), Figure 37, 

shows a convergence to a much higher characteristic impedance.  This 

characteristic has been observed before. J    The impedance has converged 

to a real characteristic impedance at and beyond 420 MHz (base diameter 

equal to approximately .245A), with impedance levels of approximately 

1.7 Z and 4.0 Z for the two antennas 6 respectively.where Z = 100 ohms. oo r J * o 

These two plots can be compared with the impedance plot for the a = 65° 

antenna with a slowing factor of 3.5 shown in Figure 38. This latter 

antenna is representative of the wider slow-wave arm antennas (width 

15/30).  The antenna impedance has converged to the neighborhood of a 

real characteristic value (1.5 Z in this case), at a lower frequency 

than either of the conventional arm antennas. The impedance was recorded 

above 500 MHz but not plotted on this figure.  It remained in the 

neighborhood of this value. 

When we recorded the impedance of the thin-arm version of this 

antenna (7.5/30) we noted a convergence to a non-real value and then a 

wandering away from that value, as indicated in Figure 39. 
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2C-10-65-90 

Figure 36.  Smith Chart impedance plot for complementary 
antenna (a = 65° and 61 = 90°).  (Z = 100 ohms.) 

o 
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2C-10-65-16 

Figure 37.  Smith Chart impedance plot for normal spiral 
antenna with "equivalent" arm width equal to 
thin zigzag arm width (a - 65° and 6f = 16°). 
(Z = 100 ohms.) o 
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2C-10-65-107-15/30-3.0 

Figure 38.  Smith Chart impedance plot for wide zigzag 
antenna with geometrical slowing factor ■ 3.5 
(a = 65°).  (Z = 100 ohms.) 



52 

Original Tip 2C-10-65-107-7.S/30-30 

Figure 39.  Smith Chart impedance plot for thin zigzag 
antenna with geometrical slowing factor = 3,5 
(a = 65°).  (Z = 100 ohms.) 

o 
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The reactive component in the impedance was due to the tip con- 

struction, as shown in Figure 40(a). The tip was modified, as shown 

in Figure 40(b) to form a continuation of the arm width, rather than 

the arm envelope width. The modification brought the impedance level 

closer to the real axis, and the impedance remained clustered near this 

axis with increasing frequency (Figure 41). This latter effect was also 

accomplished by continuing the zigzag slow-wave pattern right up to the 

feed tabs, dispensing with the short spiral "feeder" arm shown on the 

conical surface.  It had previously been shown that the tip construction, 

including the tapered feed tabs on the truncated tip of the cone, are 

an important factor in controlling and eliminating any reactive component 

(41 
in the characteristic input impedance. J 

Table II shows the measured "characteristic" impedance (Z ) of the 

normal spiral arm antennas and the zigzag antennas which were studied. 

The arrows in this table indicate the "equivalent" normal arm antenna to 

which the slow-wave antennas can be compared. As reflected in Figures 36 

through 39, the VSWR of all of these antennas, referred to Z , will in- 

crease as the wavelength of operation is increased, or the base diameter 

of the antenna is decreased, below the conventional design size, and the 

lower portion of the active region becomes distorted by the base truncation. 

This increase in VSWR, referred to the characteristic impedance of 

the particular antenna, Z , is shown in Figures 42 and 43 for the a = 65° 

antennas and in Figures 44 and 45 for the a = 70° antennas. 

* There is no explanation at this time as to why the trend for the a ■ 70°, 
thin zigzag antennas appears to be reversed from that of the other antennas. 
The impedance is increasing instead of decreasing with increasing geometrical 
slowing factor. 



(a) (b) 

ORIGINAL TIP MODIFIED TIP 

Figure 40a.  Original tip construction for thin 
zigzag antenna with geometrical 
slowing factor =3.5 (a - 65°). 

Figure 40b. Modified tip construction for thin 
zigzag antenna with geometrical 
slowing factor = 3.5 (a = 65°). 



55 

Modified Tip 2C-10-65-107-7.5/30-3.0 

Figure 41.  Smith Chart impedance plot for thin zigzag 
antenna with modified tip construction and 
geometrical slowing factor = 3.5 (a = 65°). 
(Z - 100 ohms.) 

o 
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TABLE II 

MEASURED "CHARACTERISTIC" IMPEDANCE (ZQ) OF CONICAL SPIRAL ARM 

AND ZIGZAG ARM ANTENNAS (26  - 10°) 

Antenna 
Spiral Arm Width (6f) 

in Degrees 

16  21  34  46  90 

Zigzag 
Slowing Factor 

2,0  2.5  3.0  3.5 

tx - 65° 
Spiral Arm 
Wide ZZ (15/30) 
Thin ZZ (7,5/30) 

\a  - 70° 
Spiral Arm 
Wide ZZ (15/30) 
Thin ZZ (7.5/30) 

380 

4L_ 

280 155 
205 
270 

177 
260 

155 
255 

153 
250 

310 230 162 
*  160  140 

- 210  245 
120 
260 

77 
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An inspection of these four figures and the design curves in 

Reference 3 indicate that an antenna design based only on impedance 

characteristics would permit a size reduction of up to 18 or 20 percent 

when using the thin arm zigzag geometry. However, as we have seen in 

the preceding discussion, the size of the antenna will probably be 

controlled by the radiation characteristics, and the use of any other 

criterion for size reduction will result in less than optimum radiation 

performance. 

The measured VSWR and the magnitude of the reflection coefficient 

of these antennas, referred to a 100 ohms balanced feed system, is 

shown in Figures 46 through 49.  This 100 ohm balanced feed is the 

simplest practical feed for these antennas.  It consists simply of a 

broadband 50 ohm coaxial hybrid with the sum port terminated in a matched 

load, and two equal length 50 ohm coaxial lines carried along the antenna 

axis to form a balanced 100 ohm feed. 

1.6 Summary 

We have been concerned with investigating the characteristics of 

conical spiral antennas, of relatively loose wrap (a = 65 and 70°), 

constructed with arms modified into a zigzag slow-wave geometry.  For 

this admittedly quite limited range of conical spiral antennas, a large 

discrepancy was observed between the geometrical and electric slowing 

factors. 

Geometrical slowing factors of as much as 3.5:1 yielded electrical 

slowing factors of no greater than 1.14:1, when performance was based 

upon radiation characteristics.  This implies the possibility of reducing 

the size of the antennas by 14 or 15 percent.  If impedance characteristics were 

to be the controlling factor this reduction could be increased to 20 percent. 
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The use of the zigzag slow-wave geometry,which was studied,also 

resulted in an increase in beamwidth and a change in characteristic 

impedance level. These changes may or may not be desirable depending 

upon the intended application. 

The study and its results should prove of use for the design of 

conical antennas intended for specific applications. However, possibly 

the most significant result is the knowledge that there appears to be 

this high ratio of geometric slowing required to make major changes in 

the effective propagation constant along the spiral geometry of the arms 

of this type antenna. This information was the basis for a limited 

study of one slow-wave helix antenna. This study is considered in part II 

of this report. 
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PART II.  A SLOW-WAVE HELIX 

2.1.  Introduction 

The annual report, dated September 1971  , which was submitted 

under the prior contract, was concerned with the study of the small un- 

balanced conical spiral antenna (CUSP).  In that report it was suggested 

the radiation from this type antenna might be controlled by constructing 

the complete arms with a slow-wave geometry.  Since there is little 

documented information available on the use of slow wave structures for 

the spiral arms of these antennas, the study that forms Part I of this 

report was carried out. 

In that earlier study it was discovered that the radiation from the 

CUSP antenna, in the range of wavelengths of prime interest (i.e. when 

the antenna was small in wavelengths), originated from effectively 

feeding one arm of this structure against the inner metal core which 

housed the electronic equipment.  The second arm of the two arm conical 

antenna merely served as part of the feed mechanism.  Thus although it 

was a two arm structure fed at the apex of the cone,it was operating as a 

monofilar base-fed helix. And,since the maximum diameter was small in 

wavelengthstthe maximum of radiation was broadside to the axis of the cone 

as for a normal-mode helix. 

In the light of this knowledge, and that which we gained from the 

study of the slow-wave conical spiral, we concluded that the axial-mode 

type of pattern coverage that might be desirable from this relatively 

small structure could be obtained by simply constructing a single slow- 

wave arm antenna and feeding this single arm against an inner metal core. 
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2.2 The Antenna 

We made a very limited study of a small diameter conical antenna 

(with maximum circumference of approximately 1/4 wavelength) operated as 

a slow-wave base-fed end-fire helix. To obtain a maximum of radiation 

along the axis of this antenna the propagation constant along the arms 

would have to be changed by a factor of approximately 4 to 1 so that 

approximately 2TT radians of phase shift could be accumulated in one turn 

of the arms. Without this change in propagation constant, as indicated 

above, an antenna of this diameter would radiate a maximum of energy 

broadside to the antenna axis, as a normal-mode helix. Using the re- 

sults of the previous work on the slow-wave spiral antennas, and some 

preliminary checks on the helix-type structure, we estimate that it 

would require a geometric slowing factor of at least 9 or 10 to 1 to 

achieve an electric slowing factor of approximately 4 to 1. 

A monofilar conical helix of 2 1/4 turns was constructed with a 

geometric slowing factor of 9,2:1. This antenna, with its inner metal 

core removed, is shown in Figure 50. The antenna was constructed by 

etching the arm on a 0.010 inch Teflon impregnated fiber glass cone, clad 

with 1 mil. of copper on one side. The cone has an included cone angle 

of 10.8 degrees and a base diameter of 19.3 cm., a truncated tip diameter 

of 5.3 cm, and an axial length of 73 cm. The respective dimensions of 

the metal core are 15.3 cm, 6 cm, and 41 cm. 

2.3 Radiation Characteristics 

Radiation patterns recorded from 130 MHz to beyond 200 MHz indicated 

that this antenna was basically an axial-mode radiator.  Patterns taken 

at 150, 160, and 180 MHz are shown in Figures 51-53.  For those patterns the 

antenna axis is along the 0=0 and 180 line, and the apex of the cone is 
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Figure 50.  Photograph of the zigzag slow-wave conical helix antenna 
with the inner metal core removed. 



70 

Figure 51.  Radiation patterns of zigzag slow-wave conical helix. 
150 MHz.  Single curve is EQ polarization. 
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Figure 52.  Radiation patterns of zigzag slow wave conical helix. 
160 MHz.  Single curve is E polarization. 
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Figure 53.  Radiation patterns of zigzag , slow wave conical helix. 
180 MHz.  Single curve is EQ polarization. 
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at 0 = 0°. The vertical scale is in dB with 2 dB per major division. 

A battery powered oscillator and the associated electronics were 

contained in the inner metal core.  There were no wires or cables connected 

to the cone. The slow-wave conical helix was excited at the base end 

against the inner metal core as shown in Figure 54.  The patterns were 

recorded with a constantly rotating linearly polarized receiving antenna, 

and hence the difference between the maximum and minimum excursions of 

the fine structure at any point on the pattern is the axial ratio of the 

field in that particular direction.  Patterns were also recorded with a 

fixed plane of polarization of the receiving antenna (Efl, i.e. polarized 

in a plane which contains the cone axis), and these are the single line 

curves. 

As indicated in these figures,this is essentially a linearly polarized 

bidirectional radiator.  The pattern coverage along the axis of the antenna 

is excellent, although there is some change in the plane of polarization 

with change in direction and frequency. This latter characteristic will 

be discussed later. 

The power gain, on-axis, without matching, was recorded at 150, 163, 

and 180 MHz as -8.7, -5.5, and -12.9 dB with respect to an isotropic 

level.  This will also be discussed after considering the mismatch of the 

antenna to the 50 ohm feed line. 

2.4.  VSWR Measurements 

The VSWR of the antenna, was measured using the non-metallic cable 

system described in reference no.  6.  As shown in Figure 55, it was 

quite high, referenced to 50 ohms, indicating a sizable mismatch loss. 

Table III below shows the VSWR and mismatch loss between the generator 

and the antenna, at the three frequencies when the gain was directly 

measured. 
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Figure 54.  Base view of slow-wave helix showing inner metal cone. 
The coaxial feed cable center conductor extends through 
the metal cone and connects to helix. 
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Figure 55. Measured VSWR referred to 50 ohms of one slow wave conical helix 
antenna (constructed with zig-zag geometry). 
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Table No. III. Gain, VSWR, and Mismatch Loss of the Slow Wave Conical 

Helix Antenna. 

Gain 
Freq. BBPG vqwR Mismatch     (BBPG corrected 
Nttz dB (RTI) VbWK        loss dB      for mismatch) 

dB 

150 -8.7 7.0 -3.5 -5.2 

163 -5.5 2.5 -.9 -4.6 

180 -12.9 8.0 -4.0 -8.9 

2.5.  Near-Field Measurements 

The relative phase and amplitude of the normal component of the 

electric field (EN) near the surface of the cone were recorded at 150 MHz, 

with the set-up described in Part I of this report.  These measurements, 

made along the center line of the envelope of the zigzag geometry, 

indicated a standing wave with nulls approximately 21 cm apart near the 

base, increasing to approximately 25 cm apart near the apex. Thus the 

guide wavelength (A ) on the cone was between approximately 42 and 50 cm, 

compared with the free space wavelength (A ) of 200. This indicated an 

electrical slowing factor of from 4 to 4.75:1, from a geometrical slowing 

factor of 9.2:1. The variation in the electrical slowing factor can be 

accounted for by the changing geometry of the spiral arms.  For arms, 

with a constant width envelope, wrapped on a cylinder, this slowing factor 

should remain constant. 

This first version of the slow-wave helix did have approximately the 

electrical slowing that we desired, and did indeed have axial directed 

radiation.  It is not however an optimum design. The standing wave of 

antenna current, and hence electric field along the envelope of the arm, 
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tended to prevent the antenna from having radiation characteristics that 

are symmetrical about the antenna axis. 

Figure 56 shows this standing wave along the spiral arm.  In this 

figure we show a scale drawing of the development of the conical surface 

of this antenna reduced by a factor of 1/25.3. The envelope of the slow- 

wave arm is shown on this development of the cone. The path along which 

E was measured is shown as a dotted line and the standing wave of E 

which was recorded has been drawn along this path. 

We also probed EN along radius vectors on the conical surface.  These 

probe lines are shown on the development of the cone, in Figure 57.  In 

this figure we have shown the standing waves along the arm, and those 

observed along the radius vectors. These latter amplitude (and implied 

phase, since alternate lobes are out of phase) distributions form the 

aperture distribution that controls radiation in the axial direction. 

The lack of symmetry, with the angle <j> around the antenna, is evident. 

2.6.  Conclusions 

The initial purpose of this investigation was to show that the major 

, radiation from this small conical structure could be directed in an axial 

direction, by constructing a monofilar slow-wave helix on the surface of 

the cone, and exciting this helix against an inner metal core. 

This effort was successful and it shows good promise. No effort 

was made to show performance over a complete octave bandwidth, although 

that shown is representative of such performance. This antenna was 

considered a first effort only. Based upon this start we feel that im- 

provements can be made in the input reflection coefficient, with and 

without matching, and hence the "broadband power gain" on axis. 
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Figure 56.  Development of the conical surface of the slow-wave 
helix with only the envelope of the arms shown.  Probe 
line and measured standing wave of E is shown along this 
envelope.  150 MHz. 
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Figure  57.     Development  of  the  conical  surface of  the  slow-wave 
helix with envelope of  slow wave arm shown.     Probe 
lines  and measured standing waves  of E    along arm and 
along  radius  vectors  are shown.     15Q JJHZ 
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These improvements could come from constructing the antenna with an 

undulating geometry, rather than the sharp zigzags which were used. This 

should reduce the discontinuities along the arm. 

The antenna, as described here, is not radiating in a traveling wave 

mode which is characteristic of the axial beam helix.  Control of the phase 

velocity along the structure, by a different choice of geometry and 

geometrical slowing factor, should make the realization of this traveling 

wave mode possible.  If realizable, this traveling wave antenna should 

have more constant input impedance and more symmetrical radiation char- 

acteristics.  These factors should be investigated, but this could not 

be accomplished within the time limitation of the present contract. 
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APPENDIX A 

CONSTRUCTION OF ZIGZAG GEOMETRY 

The zigzag is drawn within the envelope formed by a single spiral 

arm of the normal conical log-spiral antenna. Figure Al shows the 

relationship between the zigzag geometry and the parameters of the 

log-spiral arm. 

The spiral arm is at an angle a to a radius vector extending from 

the apex to the base along the surface of the cone, and has an angular 

width of 6', according to the conventions previously established{4]. 

The zigzag should have equal widths for each arm in order to maintain 

a relatively constant impedance to the current wave traveling down the 

cone surfaces. Therefore w, the perpendicular width of a zig, should 

equal W, the perpendicular width of the adjoining zag. 

The problem of determining the zigzag relationship is simplified 

by placing the boundaries of the zigs colinear with the radial vectors, 

and assuming straight-line approximations.* The endpoints of the zigs 

are connected to the endpoints of the zags so as to maintain the equal 

perpendicular widths.  The boundaries of the zags form an angle ß to 

the radius vector, measured in the opposite direction to a. 

The concept of slowing factor can be illustrated by Figure A2. 

The electric current will travel a distance Q along a zag, and a 

distance R along a zig, compared to the distance P on a normal spiral 

*This is a valid assumption since the widths are always much smaller 
with respect to the cone circumference at any point along the cone 
surface. 
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Figure A2.  Diagram illustrating the slowing factor concept. 



85 

arm. The time to travel the distance Q + R will be longer than that 

for P, and we therefore can say that the electric current requires a 

0 + R 
time factor *-=— longer to travel the zigzag path: 

Slowing factor, c - ^-±-5 . (i) 

That is, the electric current has been slowed by a factor £. 

Figure Al indicates the relationship between P and <fr, where <f> is 

the angular distance between the leading boundaries of adjacent zigs 

(or similarly, between the leading boundaries of adjacent zags), 

measured with reference to the apex: 

P - -A—  . (2) sin a ' 

Referring to triangle ABC in Figure Al, and applying the Law of Sines, 

 S  .  «' 
sin (90 - a)    sin (a + 3) 

n . A»  cos q Q  ö sin (a + 3)  ' 

Using the Law of Sines again on triangle BCD in Figure A2, 

sin a    sin[180 - (a + 3)] 

R m    Q sin (a + 3) 
sin a 

Substituting the values for Q and R into the slowing factor equation, 

(1) reduces to 

6f  r cos a sin a        , /ON 

*    m   T   l    »In (a + B) + C°" al  *      (3) 

We note that triangles GHC and EBF in Figure Al are congruent. 
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Consequently, 

angle CGH - angle FEB       (a) 

angle GCH - angle FBE       (b) 

angle CGH - 90 - a 

angle GCH - a 

angle FEB - a + 3 - 90 

angle FBE - 180 - (a + ß) 

Equating the respective equal angles, (a) and (b), both sets of angles 

reduce to 

3 - 180° - 2o . (4) 

Therefore, the angle the radius vector makes with the boundary of the 

zag, 3, Is determined by the angle of wrap, a. 

Substituting (4) into (3), the slowing factor equation reduces to 

r    2<5' /;x ; - —- cos a . (5) 
9 

This result suggests a large variety of methods for determining a 

zigzag geometry«  For example, there are several ways to achieve a 

specific geometric slowing factor, if reasonable values are chosen for 

6', $, and a.  Care should be taken in specifying $ so that it divides 

rationally into 360°, permitting zigs to match up with zags along a 

radius vector where a physical joint might be placed, and selecting an 

appropriate a and 6' for a given included cone angle to produce 

directive radiation patterns 

For the results presented in this paper, <J> and a were fixed, with 

61 being determined from a given £. 
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It should be noted that a drawing of a normal spiral must be 

created so that the zigzag geometry can be constructed within the 

envelope of the spiral arm. 

A master is created by drawing on the development of a conventional 

cone radius vectors spaced according to the spacing chosen for the 

zigzag geometry.  The normal spiral arm drawing is placed on top of the 

master, and the zigzags are ready to be drawn. 

Figure A3 illustrates the construction of the zigzag geometry, 

A fixed triangle edge is placed along a radius vector, with the right- 

angled corner at the upper left  An adjustable-angle triangle is set 

for the angle 3, and it is placed along the left edge of the fixed 

triangle such that an angle 3 is made to the radial line, measuring 

counterclockwise.  We began the zag boundary line from the bottom-most 

part of the spiral envelope, although the upper part could be the 

starting point.  (The choice should be consistent throughout the 

construction of the zigzag geometry.)  This line can be called the 

leading boundary of the zag. 

The trailing boundary of the zag is drawn in the same manner, 

with the exception that the fixed square is realigned with a new 

radius vector corresponding to the angular arm width of the zag <)>.. . 

$- is an arbitrary value, but should be less than half the length of 

a zigzag cell, <J>, in order to achieve a good electric slowing factor. 



Figure A-3.  Construction of zigzag geometry. 
00 
00 
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The zigs can be made once the leading and trailing edges of the 

zags are drawn by simply connecting the end of a leading edge to the 

beginning of a trailing edge, for example, points C and D in Figure Ale 

Generally, these lines will not lie along a radius vector, as assumed, 

but the error is only a few degrees, depending upon the cone and zigzag 

geometry parameters.  It should also be noted that the zig arm width 

will not be equal to the zag arm width due to logarithmic growth, but 

the difference is extremely small and will have negligible effect on 

the electric slowing factor„ 
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APPENDIX B 

CALCULATION OF "EQUIVALENT" SPIRAL ARM WIDTH FROM ZIGZAG 

The "equivalent" spiral arm width has a perpendicular width of 

w, the width of the zigzag arm» and makes an angle of a to any radius 

vector.  This isv the same as taking a zig or zag and "bending" it up 

to the angle of wrap,  a, made by the zigzag envelope.  The problem 

reduces to finding the 6! of the "equivalent" spiral arm. 

We define the "equivalent" spiral width to be 6ff.  (See Figure 

Bl.) The Law of Sines for Spherical Triangles can be used to 

compensate for the cone curvature in solving for 6''s 

sin w      sin 6fl All widths are in 
sin(90-a)      sin a terms of degrees, 

6,f - sin  [sin w tan a] . 

The Law of Sines for Plane Triangles can also be used, although 

the two values of 6" will differ by a few degrees.  This difference 

will be unnoticeable in terms of the resultant near-field character- 

istics: 

6!f - w tan a . 
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Figure B-l. Determination of the "equivalent" spiral arm width 
of the wide and thin arm zigzag geometries. 
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APPENDIX C 

CALCULATION OF ELECTRIC, SLOWING.FACTOR AND 
PERCENTAGE SIZE REDUCTION OF ZIGZAG ANTENNAS 

The -15 dB points on the surface of the cone were determined for 

three frequencies and an average value used for both the normal spiral 

antennas (references) and the zigzag antennas.  The shifts of the -15 

dB points of the zigzag antenna relative to the -15 dB points of the 

reference antennas are then expressed as a percentage of zigzag size 

to the size of the reference antenna: 

Percent Size Reduction ■  X 100 
PREF 

where p is the distance measured from the apex to the -15 dB point on 

the surface of the cone. 

The electric slowing factor can be determined from the previous 

result: 

Electric slowing factor 
(100% - % Size Reduction) 
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APPENDIX D 

Radiation Patterns of Conical Spiral Antennas 

(Refer to Section 1.4.1, page 27) 
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Figure D-3.  Radiation patterns of conventional conical spiral 
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Figure D-4.  Radiation patterns of slow-wave conical spiral 
antenna, a = 70°, wide arm width (15/30), slowing 
factor 2.0. 
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Figure D-5. Radiation patterns of slow-wave conical spiral 
antenna, a - 70°, wide arm width (15/30), slowing 
factor 2,5. 
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antenna, a = 70°, narrow arm width (7.5/30), 
slowing factor 2.0. 
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Figure D-13,  Radiation patterns of conventional conical spiral 
antenna, a = 65°, 61 - 34°. 
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Figure D-14. Radiation patterns of conventional conical 
spiral antenna, a ■ 65°, 61 - 90°. 
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Figure D-JL6. Radiation patterns of slow-wave conical spiral 
antenna, a ■ 65°, narrow arm width (7,5/30), 
slowing factor 2.0. 
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Figure D-15.  Radiation patterns of slow-wave conical spiral 
antenna, a ■ 65°, wide arm width (15/30), 
slowing factor 2.5. 
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Figure D-17.  Radiation patterns of slow-wave conical spiral 
antenna, a = 65°, narrow arm width (7.5/30), 
slowing factor 3.0. 
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Figure D-18.  Radiation patterns of slow-wave conical spiral 
antenna, a ■ 65°, narrow arm width (7.5/30). 
slowing factor 3.5. 
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APPENDIX E 

Relative amplitude of axial radiation from conical spiral antennas 

as a function of antenna size in wavelengths. 

(Refer to Section 1.4.2, page 33). 
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Figure E-l Relative amplitude of axial radiation from slow-wave 
conical spiral antenna,  a - 65°, arm with 15/30, 
slowing factor 2.0.  The 3 data points indicated by 
an x indicate Isotropie level at that point. 
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Figure E-2 Relative amplitude of axLal radiation from slow-wave 
conical spiral antenna, a - 65°, arm width 15/30, 
slowing factor 2.5.  Data points indicated by x are 
Isotropie levels. 
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Figure E-3 Relative amplitude of axial radiation from slow-wave 
conical spiral antenna, a ■ 65°, arm width 15/30, 
slowing factor 3.0.  Data points indicated by x  are 
Isotropie levels. 
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figure E-4 Relative amplitude of axial radiation from slow-wave 
conical spiral antenna, a - 65°, arm width 15/30, 
slowing factor 3.5.  Data points indicated by x are 
isotropic levels. 
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Figure E-5 Relative amplitude of axial radiation from alow-wave 
conical spiral antenna, a = 65°, arm width (7.5/30), 
slowing factor 2.0.  The 3 data points (x) are 
isotropic levels. 
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Figure E-6 Relative amplitude of axial radiation from slow-wave 
conical spiral antenna, a - 65°, arm width (7.5/30), 
slowing factor 2.5.  The 3 data points (x) are 
isotrooic levels. 
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Figure E-7 Relative amplitude of axial radiation from slow-wave 
conical spiral antenna, a = 65°, arm width (7.5/30), 
slowing factor 3.0.  The 3 data points (x) are 
Isotropie levels. 
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Figure E-8 Relative amplitude of axial radiation from slow-wave 
conical spiral antenna, a - 70°, arm width (15/30) 
slowing factor 2.0.  Data points (x) are Isotropie 
1evp1«. 
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Relative amplitude of axial radiation fro» slow-wave 
conical spiral antenna, a » 70°, arm width (15/30) 
slowing factor 2.5.  Data points (x) are Isotropie 
levels. 
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Figure E-10 Relative amplitude of axial radiation from slow-wave 
conical spiral antenna, a - 70°, arm width (15/30) 
slowing factor 3.0.  Data points (x) are Isotropie 
levels. 
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Figure E-ll Relative amplitude of axial radiation from slow-wave 
conical spiral antenna, a » 70°, arm width (15/30) 
slowing factor 3.5.  Data points (x) are isotropic 
levels. 
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Figure E-12 Relative amplitude of axial radiation from slow-wave 
conical spiral antenna, a = 70°, arm width (7.5/30), 
slowing factor 2.0. Data points (x) are Isotropie levels. 
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/  Figure E-13 Relative amplitude of axial radiation from slow-wave 
conical spiral antenna, a - 70°, arm width (7.5/30), 
slowing factor 2.5.  Data points (x) are Isotropie 
leveIs. 
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Figure E-1A Relative amplitude of axial radiation from slow-wave 
conical spiral antenna, a = 70°, arm width (7.5/30), 
slowing factor 3.0.  Data points (x) are Isotropie 
levels. 
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